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PROLOGUE

19th Century risk management

Prologue

“Until recently, credit risk management has changed little since the days of
Rothschild. He always lent to both sides in any war. The winner would
always ensure that both debts were repaid. If the borrower didn’t repay, then
Rothschild might finance a new war against the winner to enforce his debt.
The cunning man was well versed in risk management.”

— Satayjit Das, “Credit crash?”
Wilmott blog, February 2007



FUNDAMENTALS

Dependency relationships of random variables

Concordance measures . . .
are statistics —
Examples: Pearson’s correlation, Kendall’s tau,
Spearman’s rho, Blomquist’s beta, and the tail index.

Copula information . . .
is complete —
Examples: Probability copula, Lévy copula.
With marginal distributions they are invertible.



FUNDAMENTALS

Probability measure and Lévy measure, compared
distribution functions vs. tail integrals

Ax = (−∞, x]× R, x ∈ R Cx = (x, ∞]× R+, x > 0

By = R× (−∞, y], y ∈ R Dy = R+ × (y, ∞], y > 0

F(x, y) =

∫
Ax∩By

dµ L(x, y) =

∫
Cx∩Dy

dν

F1(x) =

∫
Ax

dµ L1(x) =

∫
Cx

dν

F2(y) =

∫
By

dµ L2(y) =

∫
Dy

dν



FUNDAMENTALS

Probability copula and Lévy copula, compared

C(u, v) = F
(
F−1

1 (u), F−1
2 (v)

)
K(u, v) = L

(
L−1

1 (u), L−1
2 (v)

)
or F(x, y) = C

(
F1(x), F2(y)

)
or L(x, y) = K

(
L1(x), L2(y)

)
The uniform margin condition . . .

C1(u) = C(u, 1) = u K1(u) = K(u, ∞) = u
C2(v) = C(1, v) = v K2(v) = K(∞, v) = v

and the grounded condition . . .

C(0, v) = C(u, 0) = 0 K(0, v) = K(u, 0) = 0



FUNDAMENTALS

Probability density and Lévy density, compared

If the probability measure and the Lévy measure have densities
f (x, y) and l(x, y), then so also do their copulas, as here.

c(u, v) =
∂2

∂u∂v
C(u, v) =

∂2

∂x∂y
F(x, y)

/ (
∂F1

∂x
∂F2

∂y

)
=

f (x, y)

f1(x)f2(y)

k(u, v) =
∂2

∂u∂v
K(u, v) =

∂2

∂x∂y
L(x, y)

/ (
∂L1

∂x
∂L2

∂y

)
=

l(x, y)

l1(x)l2(y)



FUNDAMENTALS

Special copulas

The probability copula class and Lévy copula class contain various
special copulas. Among them are the Fréchet-Hoeffding upper and
lower limit copulas, and the independent copulas, as here.

C↑(u, v) = min(u, v) K↑ = min(u, v)

C↓(u, v) = max(u + v − 1, 0) K↓ = (no analogue)
C⊥(u, v) = uv K⊥(u, v) = u · 1{v=∞} + v · 1{u=∞}

For a good foundation in Lévy copulas see (Applebaum 2004)
and (Kallsen and Tankov 2006).



EXAMPLES

I. Subprime loan defaults and economic decline
An issue of public policy

What is the relationship between Xi and Yi?
Let Xi be the fraction of defaults in period i, and Yi be the negative of
the growth rate (the decline rate) of the Gross National Product.

Xi =
Di

Ti
Yi = log

(
Gi−1

Gi

)
where Di > 0 and Ti > 0, so Xi ∈ [0, 1], and where Gi > 0, so Yi ∈ R.
For a study on the distribution of loan losses see (Vasicek 1991). For a
dynamic extension of Vasicek’s model see (Lamb and Perraudin 2006).
For an examination of the causes of corporate default clustering see
(Das, Duffie, Kapadia, and Saita 2007).



EXAMPLES

Choosing a copula

Gumbel good, maybe rotated Clayton better —
probably not Frank.
Gumbel: Has strong right tail dependence, as expected from
anecdotal evidence.
Rotated Clayton: With similar features to Gumbel, has stronger
right tail dependence.
Frank: Exhibits symmetric dependence, so may not explain well.

A question —
Given such a choice, how best does one provide a fit?
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EXAMPLES

Fitting a copula

To keep in mind —
Better methods of fitting a copula will make all of copula theory more
useful.

Some approaches to parameter estimation —
1 Least squares comparison to independent copula
2 Maximum likelihood
3 Conditional probability integral transform (CPIT)

(Berg and Bakken 2007)
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EXAMPLES

The CPIT method . . .

CPIT allows for explicit weighting of observations
in an empirical copula near the boundaries of its domain allowing for
more robust fitting of dependent tails.
The transform identifies the independent uniform [0, 1] variates
associated with a random draw from a known probability distribution.
It is the inverse of making such a draw starting with the variates.



EXAMPLES

. . . relies on this definition.

If Z = (X, Y) be a random variable on (R2, B, P), with distribution
F(x, y) having margins F1(x) and F2(y), then

cpit(F) :=
(
F1(x), F2|1(y|x)

)
,

where F2|1(y|x) =
∂F
∂x

∣∣∣∣
(x,y)

Observe cpit(F) is uniform on [0, 1]2.



EXAMPLES

II. Father and son accident propensity
An issue of joint responsibility

Again, what is the relationship between Xi and Yi?
Consider the set of fathers with sons, or of mothers and daughters,
each of whom drives. Let Xi and Yi, respectively, be the fractions of
those parents and children having accidents in period i.

Xi =
Pi

Ti
Yi =

Ci

Ti

where 0 6 Pi, Ci 6 Ti > 0, so Xi, Yi ∈ [0, 1].



EXAMPLES

Choosing a copula

Frank may be good —
probably not Gumbel or Clayton, either direct or rotated.
Frank: Has strong right and left tail dependence, as expected from
anecdotal evidence.
Gumbel and Clayton: Exhibit asymmetric dependence, so may
not explain well.

Note that this example compares to Francis Galton’s original study
defining regression by utilizing Adrien-Marie Legendre’s concept of
least squares. See (Galton 1886) and (Legendre 1805).



EXAMPLES

Symmetric role of variables

Comparing, as we just have, a copula study to a regression study,
we note these points.

The regression study has an explanatory variable (father’s height)
and an explained variable (son’s height.)
The copula study has variables entering symmetrically (father’s
and son’s driving records.) This is not to say that the resulting
copula is symmetric. It may be (Archimedean, e.g.)



RISK AND ITS MEASUREMENT

The risk manager’s credo

Know what the risk is and how to measure it
before trying to manage it.



RISK AND ITS MEASUREMENT Historical perspective

The nature of risk

Not long ago one concept of financial risk dominated all others. This
was variability of returns and related proxies such as relative
covariability to that of a broad market index, as captured in the now
legendary “beta value.”

β =
cov(Y, X)

σ2(X)

Three well-respected investigators — Harry M. Markowitz, Merton
H. Miller, and William F. Sharpe — won Nobel Prizes in Economics in
1990, all assuming throughout the works cited in their awards, this
fundamental concept of risk.
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RISK AND ITS MEASUREMENT Historical perspective

Assumptions too simple

A problem ensued, however.
Along with the one concept of risk came the convenient assumption
that the logarithms of returns are normally distributed.
All dependency relationships among market-related random
variables, therefore, came to the fore as a simple, invariant object —
the covariance matrix.



RISK AND ITS MEASUREMENT Historical perspective

Some facts to consider

Before the ink was dry (much before!) on those Nobel Prize
certificates, three things were well understood in the academic
community.

1 Distributions of returns may not be — in fact are not —
multinormal.

2 Variances and covariances may not even exist, e.g., α-stable
distributions.

3 Any indicators of return dispersion may well — in fact typically
do — change through time.



RISK AND ITS MEASUREMENT Modern studies

Coherent and convex risk measures

Given the inadequacy of historic risk concepts to serve the needs of
modern analysis and application researchers have turned to new ideas
and methods. Among the recent studies to emerge exploring the
foundations of risk and its measurement are these.

1 (Artzner, Delbaen, Eber, and Heath 1999)
Defines and examines properties of coherent risk measures.

2 (Frittelli and Rosazza Gianin 2005)
Studies law invariant coherent and convex risk measures.

3 (Mataramvura and Øksendal 2005)
Researches convex risk measures in stochastic differential games.

4 (Rosazza Gianin 2006)
Investigates on g-expectations and convex risk measures.



RISK AND ITS MEASUREMENT Modern studies

A forward look

Risk measures relate directly to premiums for insurance
and to prices of financial derivative instruments. As such,
understanding risk leads to a more efficient economy.
Not understanding risk requires prudently the maintenance of
expensive, otherwise unused reserves to prepare for unanticipated
contingencies. This phenomenon itself warrants academic inquiry as
an aspect of decision making with only partial information.



COPULA THEORY . . .

Copular convolution and spatial relations
(
X Joint−−−−−→

Random
Variables

Y
)
−−−−−−→ X + Yy y yif independent(

F Joint−−−−−−−→
Distributions

G
)
−−−−−−→ FFG

(
F1

First−−−−−→
Margins

G1
)
−−−−−−→ F1FG1y y yif independent(

C
Copulas
−−−−−→ D

) Definition−−−−−→ CF̂Dx x xif independent(
F2

Second−−−−−→
Margins

G2
)
−−−−−−→ F2FG2



COPULA THEORY . . .

Copular evolution and temporal relationships
(
Xs

Joint−−−−−→
Random
Variables

Xt
)
−−−−−−→ Xs+ty y yif independent(

Fs
Joint−−−−−−−→

Distributions
Ft

) Definition−−−−−→ FsF̃Ft

(
F1s

First−−−−−→
Margins

F1t
)
−−−−−−→ F1sFF1ty y yif independent(

Cs
Copulas
−−−−−→ Ct

) Definition−−−−−→ CsF̂Ctx x xif independent(
F2s

Second−−−−−→
Margins

F2t
)
−−−−−−→ F2sFF2t



COPULA THEORY . . .

Liberating copulas
sequences in space and time

Random variables do not have copulas, except indirectly.
Distributions have copulas.

Sequences of copulas arise naturally in stochastic analysis,
be they sequences of ordinary copulas, or sequences of Lévy copulas.
Consider first a sequence of ordinary copulas in space, {Ct(i)}, or in
time, {Ci(t)}, i ∈ N, t > 0, such as

Ct(i), the copula linking Xt(i) and Xt(i − 1) in a sequence of
stochastic processes {X(i)}, or
Ci(t), the copula linking Xi(t) and Xi(t − 1) in stochastic process Xi.
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COPULA THEORY . . .

Lévy copula sequences and limits

Sequences of Lévy copulas, as relating to Lévy processes, can only
occur nontrivially within sequences of multidimensional processes;
within a single multidimensional process the Lévy copula, as the Lévy
measure, remains invariant.

Therefore, consider as example the sequence of copulas L(i)
of the processes Y(i), i ∈ N. Questions arise.

Does L(i) converge, or does a subsequence converge?
(Recall that Lévy copulas are in general unbounded.)
If convergent to L, is L of a special type, like the independent
copula (supported on the axes)?



COPULA THEORY . . .

Dependent volatility and jump measure
Have you heard? The market is jumpy today.

Now consider the generalized Itô-Lévy process Xt satisfying the
stochastic integral equation

Xt = X0 +

t∫
0

α(s, Xs, ω) ds +

t∫
0

σ(s, Xs, ω) dBs

+

t∫
0

∫
R0

γ(s, Xs, z, ω) Ñ(ds, dz),

for which the differential form is

dXt = α(t, Xt, ω) dt + σ(t, Xt, ω) dBt +

∫
R0

γ(t, Xt, z, ω) Ñ(dt, dz)



COPULA THEORY . . .

A driven process

The presence of Xs in this integral
(Xt in the differential form) provides a dependence structure among
the drift term, the Brownian term, and the jump term.
One could consider any of these appearances of Xs as a driven process,
perhaps subordinated, applying its influence both to volatility and to
the jump measure.
Of particular interest is the relationship between the last two terms.



COPULA THEORY . . .

A copula for volatility and jump measure

All that is necessary to create a copula
between volatility and a jump measure is to have a joint probability
distribution for them.
Such a distribution is implicit in the given formulation, and could be
subject to specific closed-form evaluation in special cases, numeric
computation in others.
These copulas could be new, and of special research interest.



COPULA THEORY . . .

Co-integration

In 2003 Clive Granger won the Nobel Prize in Economics
for his seminal contributions to the theory of co-integration, which he
and Robert Engle invented and advanced (Engle and Granger 1987).
This theory relates how non-stationary series, when differenced, can in
linear combination, be stationary. If so, the series are said to be
“co-integrated.” A vector of weights producing stationarity is said to
be a “co-integrating vector.”
Well, clearly co-integrated series exhibit dependencies. An interesting
research project would be to compare co-integration concepts of
dependency with copular concepts of dependency, both in theory and
practice.



. . . IN RISK MANAGEMENT State of the art

Recent contributions in risk management

Here is a selection of articles impacting on dependency in risk
management.

1 (Vasicek 1991)
Defines a probability of loss function on a loan portfolio.

2 (Schönbucher and Schubert 2001)
Studies an approach to incorporate dynamic default dependency.

3 (Embrechts, McNeil, and Lindskog 2003)
Researches uses of copulas in integrated risk management.

4 (Frey and Backhaus 2004)
Investigates portfolio credit risk with interacting default
intensities.



. . . IN RISK MANAGEMENT Potential contributions

Terrorism

Just another natural disaster?
The twin curses

Dimensionality
Small samples



. . . IN RISK MANAGEMENT Potential contributions

Industrialization and global warming

To what extent related?
The variables

Industrial activity
Carbon dioxide



. . . IN RISK MANAGEMENT Potential contributions

Over-extension of credit and bank failures

To what extent related?
The variables

Proliferation of incomprehensible debt instruments
Defaults on payments of interest or principal



. . . AND FINANCE State of the art

Recent contributions in finance

Here is a selection of articles impacting on dependency in finance.

1 (Duffie and Singleton 1999)
Defines models of contingent claims with default risk.

2 (Meyer-Brandis and Proske 2004)
Studies optimal filtering to estimate Lévy measures
having time-inhomogeneous densities.

3 (Malo and Kanto 2006)
Researches multivariate GARCH models for dynamic hedging in
electricity markets.

4 (Ta Thi Kieu and Øksendal 2007)
Investigates a maximum principle for stochastic differential
games in the context of partial information.



. . . AND FINANCE Potential contributions

Micro-lending and weather

In 2006 Muhammad Yunus and Grameen Bank,
which he founded, won the Nobel Peace Prize. Is such a business
vulnerable to the weather, specifically monsoons? If there is a
relationship, what is it? Can copula theory help to analyze such a risk,
or have anything to say about how to hedge it?

Concentration in regions
Vulnerability of borrowers

Collateral
Jobs



. . . AND FINANCE Potential contributions

Project stress — Airbus A380

Large companies have dependent risk exposures
for similarly situated products. What are the concordant risks? Are
they hedgeable? Can copulas help in reasoning?

Companies and products
Internal dependence — A380 and A350

Common physical structures
Cost substitution



. . . AND FINANCE Potential contributions

Real options and optimal exercise

Companies face sets of choices
for implementing competing projects. What are the concordant risks?
Are they hedgeable? Can copulas help in reasoning?

Synergy/Antergy of contemporary projects
Serial/Parallel dependence

Initiate one, then the other, or in reverse.
Initiate together.



EPILOGUE

Epilogue

It doesn’t work to leap a ten foot chasm in two five foot jumps.
— American proverb
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